Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pflugers Arch ; 474(10): 1077-1090, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35907965

RESUMO

Parathyroid hormone-related protein (PTHrP) released from detrusor smooth muscle (DSM) as the bladder fills acts as an endogenous DSM relaxant to facilitate bladder storage function. Here, the effects of exogenous PTHrP on transient pressure rises (TPRs) in the bladder and associated afferent nerve activity during bladder filling were investigated. In anaesthetized rats, changes in the intravesical pressure were measured while the bladder was gradually filled with saline. Afferent nerve activity was simultaneously recorded from their centrally disconnected left pelvic nerves. In DSM strips, spontaneous and nerve-evoked contractions were isometrically recorded. The distribution of PTHrP receptors (PTHrPRs) in the bladder wall was also examined by fluorescence immunostaining. The bladders in which the contralateral pelvic nerve was also centrally disconnected developed nifedipine, an L-type voltage-dependent Ca2+ channel blocker-sensitive TPRs (< 3 mmHg). Intravenous administration of PTHrP suppressed these TPRs and associated bursts of afferent nerve activity. In the bladders with centrally connected contralateral pelvic nerves, atropine, a muscarinic receptor antagonist-sensitive large TPRs (> 3 mmHg) developed in the late filling phase. PTHrP diminished the large TPRs and corresponding surges of afferent nerve activity. In DSM strips, bath-applied PTHrP (10 nM) suppressed spontaneous phasic contractions, while less affecting nerve-evoked contractions. PTHrPRs were expressed in DSM cells but not in intramural nerve fibers. Thus, PTHrP appears to suppress bladder TPRs and associated afferent nerve activity even under the influence of low degree of parasympathetic neural input during storage phases. Endogenous PTHrP may indirectly attenuate afferent nerve activity by suppressing TPRs to facilitate urinary accommodation.


Assuntos
Proteína Relacionada ao Hormônio Paratireóideo , Bexiga Urinária , Animais , Derivados da Atropina/metabolismo , Derivados da Atropina/farmacologia , Contração Muscular/fisiologia , Nifedipino/farmacologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Ratos , Receptores Muscarínicos/metabolismo , Bexiga Urinária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...